Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemistry ; 30(23): e202400115, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38369622

RESUMO

Hypoxia is a critical factor for restricting photodynamic therapy (PDT) of tumor, and it becomes increasingly severe with increasing tissue depth. Thus, the relief of deep tumor hypoxia is extremely important to improve the PDT efficacy. Herein, tumor microenvironment (TME)-responsive size-switchable hyaluronic acid-hybridized Ru nanoaggregates (HA@Ru NAs) were developed via screening reaction temperature to alleviate deep tumor hypoxia for improving the tumor-specific PDT by the artful integration multiple bioactivated chemical reactions in situ and receptor-mediated targeting (RMT). In this nanosystem, Ru NPs not only enabled HA@Ru NAs to have near infrared (NIR)-mediated photothermal/photodynamic functions, but also could catalyze endogenous H2O2 to produce O2 in situ. More importantly, hyaluronidase (HAase) overexpressed in the TME could trigger disassembly of HA@Ru NAs via the hydrolysis of HA, offering the smart size switch capability from 60 to 15 nm for enhancing tumor penetration. Moreover, the RMT characteristics of HA ensured that HA@Ru NAs could specially enter CD44-overexpressed tumor cells, enhancing tumor-specific precision of phototherapy. Taken together these distinguishing characteristics, smart HA@Ru NAs successfully realized the relief of deep tumor hypoxia to improve the tumor-specific PDT.

2.
ACS Appl Mater Interfaces ; 15(4): 5870-5882, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36689577

RESUMO

Natural biopolymers can be controllably in situ synthesized in organisms and play important roles in biological activities. Inspired by this, the manipulation of in situ biosynthesis of functional polymers in vivo will be an important way to obtain materials for meeting biological requirements. Herein, in situ biosynthesis of functional conjugated polymer at the tumor site was achieved via the utilization of specific tumor microenvironment (TME) characteristics for the first time. Specially, a water-soluble aniline dimer derivative (N-(3-sulfopropyl) p-aminodiphenylamine, SPA) was artfully in situ polymerized into polySPA (PSPA) nanoparticles at the tumor site, which was activated via the catalysis of hydrogen peroxide (H2O2) overexpressed in TME to produce hydroxyl radical (•OH) by coinjected horseradish peroxidase (HRP). Benefiting from outstanding near-infrared (NIR)-II absorption of PSPA, the in situ polymerization process can be validly monitored by photoacoustic (PA) signal at the NIR-II region. Meanwhile, in situ polymerization would induce the size of polymeric materials from small to large, improving the distribution and retention of PSPA at the tumor site. On the combination of NIR-II absorption of PSPA and the size variation induced by polymerization, such polymerization can be applied for tumor-specific NIR-II light mediated PA image and photothermal inhibition of tumors, enhancing the precision and efficacy of tumor phototheranostics. Therefore, the present work opens the way to manipulate TME-activated in situ biosynthesis of functional conjugated polymer at the tumor site for overcoming formidable challenges in tumor theranostics.


Assuntos
Nanopartículas , Neoplasias , Técnicas Fotoacústicas , Humanos , Polimerização , Peróxido de Hidrogênio , Neoplasias/diagnóstico por imagem , Neoplasias/tratamento farmacológico , Polímeros , Compostos de Anilina , Linhagem Celular Tumoral , Nanomedicina Teranóstica/métodos , Fototerapia/métodos , Técnicas Fotoacústicas/métodos , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...